Dodatki na portala,konkursy,instrukcje - Onet.pl portal
Relacja z Targów Ispo Munich 2015
Jednostkowy Crstina Solera Schulrucksack
Uwaga! popelnilem morderstwo i on chyba juz wie
nie na temat
Nowy look. Co myślicie?
Sezon zimowy
Applaws sucha karma dla kotow
Księgi wieczyste PAX
Bananowe pralinki
Jaki to tytuł???
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • amerraind.pev.pl

  • Dodatki na portala,konkursy,instrukcje - Onet.pl portal

    DOWOLNE WÊZ£Y

    clear;
    funcprot(0);
    clf; a=-1;
    disp("a = "+string(a));
    b=1;
    disp("b = "+string(b));
    n=11;
    disp("n = "+string(n));
    m=n+1;
    disp("m = "+string(m));
    bt1=-0.32
    al1=1.6
    function tri=tr_inv(t);
    tri=((b-a)*t+(a+b))/2;
    endfunction;
    xi=zeros(m,1)
    xi(1)=a;
    for i=0:(n-2)
    xi(i+2)=tr_inv(-cos(((2*i+1)*%pi)/(2*(n- 1))));
    end;
    xi(m)=b;
    disp(xi,"xi=");
    function f=f(x);
    f=1/(1+25*(x^2));
    endfunction;
    yi=zeros(m,1);
    for i=1:m yi(i)=f(xi(i));
    end;
    disp(yi,"yi=");
    hi=zeros(n);
    for i=1:n
    hi(i)=xi(i+1)-xi(i);
    end;
    disp(hi,"hi=");
    di=zeros(n,1);
    for i=2:(n-1)

    di(i)=(6/(hi(i)+hi(i+1)))*((yi(i+2)-yi(i+1))/hi(i+1)-(yi(i+1)-yi(i))/hi(i));
    end;
    di(n)=(6/(hi(n)))*(bt1-((yi(n)-yi(n-1))/hi(n))); di(1)=6/hi(1)*((yi(2)-yi(1))/hi(i+1)-al1)

    disp(di,"di=");
    lai=zeros(n);
    for i=1:(n-1)
    lai(i)=hi(i+1)/(hi(i)+hi(i+1));
    end;
    lai(n)=hi(1)/(hi(1)+hi(n));
    disp(lai,"lai=");
    mii=zeros(n);
    for i=1:n
    mii(i)=1-lai(i);
    end;
    disp(mii,"mii=");
    mm=zeros(m,m);
    mm(1,1)=2;
    mm(1,n+1)=1;
    for i=1:(n-1)
    mm(i+1,i)=mii(i);
    mm(i+1,i+1)=2;
    mm(i+1,i+2)=lai(i);
    end;

    mm(n+1,n)=1;
    mm(n+1,n+1)=2;
    disp(mm,"mm=");
    fv=zeros(m,1);
    fv(2:m,1)=di;
    disp(fv,"fv=");
    M=mm\fv;
    disp(M,"M = ");
    function si=si(i,x);
    si=M(i)*((xi(i+1)-x)^3)/(6*hi(i))+M(i+1)*((x-xi(i))^3)/(6*hi(i))+((yi(i+1)-yi(i))/hi(i)-(hi(i)/6)*(M(i+1)-M(i)))*(x-xi(i))+yi(i)-M(i)*(hi(i)^2)/6;
    endfunction;

    function s=s(x);
    while x<a>=b x=x-b+a;
    end;
    for i=1:n if x<xi(i+1) then s=si(i,x);
    break;
    end;
    end;
    endfunction;
    d=linspace(a,b,10000);
    plot(d,f);
    plot(xi,yi,"ok");
    plot(d,s,"r");
    clear;


    phi^3_3
    clear;
    funcprot(0);
    clf;
    a=-1;
    b=1;
    n=11;
    h=(b-a)/n;
    xi=zeros(n+1,1);
    for i=0:n
    xi(i+1)=a+i*h;
    end;
    disp(xi,"xi=");
    function f=f(x);
    f=1/(1+25*(x^2));
    endfunction;
    yi=zeros(n+3,1);
    yi(1)=0;
    for i=0:n
    yi(i+2)=f(xi(i+1));
    end;
    yi(n+3)=0;
    disp(yi,"yi=");
    M=zeros(n+3,n+3);
    M(1,1)=1;
    M(1,3)=-1;
    M(1,n+1)=-1;
    M(1,n+3)=1
    for i=2:(n+2)
    for j=1:(n+3)
    if i==j then M(i,j)=4;
    end;
    if i+1==j|i==j+1 then M(i,j)=1;
    end;
    end;
    end;
    M(n+3,1)=1
    M(n+3,2)=-2
    M(n+3,3)=1
    M(n+3,n+1)=-1;
    M(n+3,n+2)=2
    M(n+3,n+3)=-1
    disp(M,"M=");
    c=M\yi;
    disp(c,"c = ");
    function y=phi3(i,x);
    xip=zeros(5);
    for k=1:5
    xip(k)=a+(i-3+k)*h;
    end;
    if x<xip(1) then y=0;
    else if x<xip(2) then y=((x-xip(1))^3)/(h^3);
    else if x<xip(3) then y=1+3*(x-xip(2))/h+3*((x-xip(2))^2)/(h^2)-3*((x-xip(2))^3)/(h^3);
    else if x<xip(4) then y=1+3*(xip(4)-x)/h+3*((xip(4)-x)^2)/(h^2)-3*((xip(4)-x)^3)/(h^3);
    else if x<xip(5) then y=((xip(5)-x)^3)/(h^3);
    else y=0;
    end;
    end;
    end;
    end;
    end;
    endfunction;
    function fs=fspline(x);
    fs=0;
    for i=1:(n+3)
    fs=fs+c(i)*phi3(i-2,x);
    end;
    endfunction;
    d=linspace(a,b,100);
    plot(d,f);
    plot(xi,yi(2:(n+2)),"ok");
    plot(d,fspline,"r");
    clear;
    DYSKRETNA TRANSFORMATA SINUSOWA

    clear;
    funcprot(0);
    clf;
    function f=f(x);
    f=x^(sin(x));
    endfunction;
    a=0;
    disp("a = "+string(a));
    b=2;
    disp("b = "+string(b));
    c=1;
    disp("c = "+string(c));
    N=40;
    disp("N = "+string(N));
    m=3;
    disp("m = "+string(m));

    function f=f(x);
    if x<0 then f=0; else
    if x<0.5 then f=1; else
    if x<=1 then f=3; else
    if x<1.5 then f=-2*x+5; else
    if x==1.5 then f=0; else
    if x<2 then f=2; else
    if x==2 then f=1; else
    f=0;
    end;
    end;
    end;
    end;
    end;
    end;
    end;
    endfunction;
    if f(a)==f(b) then c=f(a);
    end;
    function tr=tr(x);
    tr=(%pi/(b-a))*(x-a);
    endfunction;
    function tri=tr_inv(t);
    tri=((b-a)/%pi)*t+a;
    endfunction;
    function g=g(t);
    g=f(tr_inv(t))-c;
    endfunction;
    xk=zeros(N);
    gk=zeros(N);
    Gn=zeros(N);
    bn=zeros(N);
    for i=0: (N-1)
    xk(i+1)=(%pi*i)/N;
    gk(i+1)=g(xk(i+1));
    end;
    for j=0:(N-1)
    gks=zeros(N-1);
    for i=1:(N-1)
    gks(i)=gk(i+1)*sin((%pi*i*j)/N);
    end;
    Gn(j+1)=sum(gks)
    bn(j+1)=(2/N)*Gn(j+1)
    end;

    function G=G(t);
    bns=zeros(N-1);
    for j=1:(N-1);
    bns(j)=bn(j+1)*sin(j*t)
    end;
    G=sum(bns);
    endfunction;
    function F=F(x);
    F=G(tr(x))+c;
    endfunction;
    function E=E(x);
    E=abs(f(x)-F(x));
    endfunction
    h=b-a;
    d=linspace(a,b,1000);
    dl=linspace(a-2*h,b+2*h,5000);
    d1=linspace(a,0.5-%eps,250);
    d2=linspace(0.5,b-%eps,750);
    clf(0);
    plot(d1,f);
    plot(d2,f);
    plot({0,0.5,1,1.5,2},{1,3,3,0,1},".");
    plot({0.5,1.5,2},{1,2,2},"o");
    plot(d,F,"r");
    clf(1);
    plot(d1,E)
    plot(d2,E)
    plot({0.5,1.5,2},{abs(1-F(0.5)),abs(2-f(1.5)),abs(2-F(2))},"o");
    plot({0.5,1.5,2},{E(0.5),E(1.5),E(2)},".");

    clear;
    clear;
    funcprot(0);
    clf;
    a=-1;
    disp("a = "+string(a));
    b=1;
    disp("b = "+string(b));
    n=11;
    disp("n = "+string(n));
    al1=1.634;
    disp("alpha_1 = "+string(al1));
    bt1=-4.673;
    disp("beta_1 = "+string(bt1));
    h=(b-a)/n;
    disp("h = "+string(h));
    xi=zeros(n+1,1);
    for i=0:n
    xi(i+1)=a+i*h;
    end;
    disp(xi,"xi=");
    function f=f(x);
    f=1/(1+25*(x^2));
    endfunction;
    yi=zeros(n+3,1);
    yi(1)=-(h*al1)/3;
    for i=0:n
    yi(i+2)=f(xi(i+1));
    end;
    yi(n+3)=-(h*bt1)/3;
    disp(yi,"yi=");
    M=zeros(n+3,n+3);
    M(1,1)=1;
    M(1,3)=-1;
    for i=2:(n+2)
    for j=1:(n+3)
    if i==j then M(i,j)=4;
    end;
    if i+1==j|i==j+1 then M(i,j)=1;
    end;
    end;
    end;
    M(n+3,n+1)=1;
    M(n+3,n+3)=-1
    disp(M,"M=");
    c=M\yi;
    disp(c,"c = ");
    function y=phi3(i,x);
    xip=zeros(5);
    for k=1:5
    xip(k)=a+(i-3+k)*h;
    end;
    if x<xip(1) then
    y=0;
    else
    if x<xip(2) then
    y=((x-xip(1))^3)/(h^3);
    else
    if x<xip(3) then
    y=1+3*(x-xip(2))/h+3*((x-xip(2))^2)/(h^2)-3*((x-xip(2))^3)/(h^3);
    else
    if x<xip(4) then
    y=1+3*(xip(4)-x)/h+3*((xip(4)-x)^2)/(h^2)-3*((xip(4)-x)^3)/(h^3);
    else
    if x<xip(5) then
    y=((xip(5)-x)^3)/(h^3);
    else
    y=0;
    end;
    end;
    end;
    end;
    end;
    endfunction;
    function fs=fspline(x);
    fs=0;
    for i=1:(n+3)
    fs=fs+c(i)*phi3(i-2,x);
    end;
    endfunction;
    d=linspace(a,b,100);
    plot(d,f);
    plot(xi,yi(2:(n+2)),"ok");
    plot(d,fspline,"r");
    clear;


    clear;
    funcprot(0);
    clf;
    a=-1;
    disp("a = "+string(a));
    b=1;
    disp("b = "+string(b));
    n=14;
    disp("n = "+string(n));
    al2=0.1;
    disp("alpha_2 = "+string(al2));
    bt2=0;
    disp("beta_2 = "+string(bt2));
    h=(b-a)/n;
    disp("h = "+string(h));
    xi=zeros(n+1,1);
    for i=0:n
    xi(i+1)=a+i*h;
    end;
    disp(xi,"xi=");
    function f=f(x);
    f=1/(1+25*(x^2));
    endfunction;
    yi=zeros(n+3,1);
    yi(1)=((h^2)*al2)/6;
    for i=0:n
    yi(i+2)=f(xi(i+1));
    end;
    yi(n+3)=((h^2)*bt2)/6;
    disp(yi,"yi=");
    M=zeros(n+3,n+3);
    M(1,1)=1;
    M(1,2)=-2;
    M(1,3)=1;
    for i=2:(n+2)
    for j=1:(n+3)
    if i==j then M(i,j)=4;
    end;
    if i+1==j|i==j+1 then M(i,j)=1;
    end;
    end;
    end;
    M(n+3,n+1)=1;
    M(n+3,n+2)=-2;
    M(n+3,n+3)=1;
    disp(M,"M=");
    c=M\yi;
    disp(c,"c = ");
    function y=phi3(i,x);
    xip=zeros(5);
    for k=1:5
    xip(k)=a+(i-3+k)*h;
    end;
    if x<xip(1) then
    y=0;
    else
    if x<xip(2) then
    y=((x-xip(1))^3)/(h^3);
    else
    if x<xip(3) then
    y=1+3*(x-xip(2))/h+3*((x-xip(2))^2)/(h^2)-3*((x-xip(2))^3)/(h^3);
    else
    if x<xip(4) then
    y=1+3*(xip(4)-x)/h+3*((xip(4)-x)^2)/(h^2)-3*((xip(4)-x)^3)/(h^3);
    else
    if x<xip(5) then
    y=((xip(5)-x)^3)/(h^3);
    else
    y=0;
    end;
    end;
    end;
    end;
    end;
    endfunction;
    function fs=fspline(x);
    fs=0;
    for i=1:(n+3)
    fs=fs+c(i)*phi3(i-2,x);
    end;
    endfunction;
    d=linspace(a,b,100);
    plot(d,f);
    plot(xi,yi(2:(n+2)),"ok");
    plot(d,fspline,"r");
    clear;
    clear;
    funcprot(0);
    clf;
    function f=f(x);
    f=x^(sin(x));
    endfunction;
    a=0;
    disp("a = "+string(a));
    b=2;
    disp("b = "+string(b));
    N=5;
    disp("N = "+string(N));
    m=3;
    disp("m = "+string(m));
    function tr=tr(x);
    tr=(2*x-(a+b))/(b-a)
    endfunction;
    function tri=tr_inv(t);
    tri=((b-a)*t+(a+b))/2;
    endfunction;
    function g=g(t);
    g=f(tr_inv(t))
    endfunction;
    c=zeros(m+1);
    l=nearfloat("pred",1);
    tc=linspace(-l,l,N);
    lct=zeros(N);
    mct=zeros(N);
    for j=0:m
    for i=1:N
    lct(i)=g(tc(i))*legendre(j,0,tc(i));
    mct(i)=legendre(j,0,tc(i))*legendre(j,0,tc(i));
    end;
    lc=inttrap(tc,lct);
    mc=inttrap(tc,mct);
    c(j+1)=lc/mc;
    end;
    disp(c,"c=");
    function G=G(t);
    cp=zeros(m+1);
    if t<1>=1 then t=nearfloat("pred",1);
    end
    for j=0:m
    cp(j+1)=c(j+1)*legendre(j,0,t);
    end;
    G=sum(cp);
    endfunction;
    function F=F(x);
    F=G(tr(x));
    endfunction;
    d=linspace(a,b,1000);
    plot(d,f);
    plot(d,F,"r");
    clear;
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • bolanda.keep.pl
  • 
    Wszelkie Prawa Zastrzeżone! Dodatki na portala,konkursy,instrukcje - Onet.pl portal Design by SZABLONY.maniak.pl.