![]() |
|||||
![]() |
|||||
![]() |
|||||
Dodatki na portala,konkursy,instrukcje - Onet.pl portal Relacja z Targów Ispo Munich 2015 Jednostkowy Crstina Solera Schulrucksack Uwaga! popelnilem morderstwo i on chyba juz wie nie na temat Nowy look. Co myślicie? Sezon zimowy Applaws sucha karma dla kotow Księgi wieczyste PAX Bananowe pralinki Jaki to tytuł??? |
Dodatki na portala,konkursy,instrukcje - Onet.pl portalDOWOLNE WÊZ£Yclear; funcprot(0); clf; a=-1; disp("a = "+string(a)); b=1; disp("b = "+string(b)); n=11; disp("n = "+string(n)); m=n+1; disp("m = "+string(m)); bt1=-0.32 al1=1.6 function tri=tr_inv(t); tri=((b-a)*t+(a+b))/2; endfunction; xi=zeros(m,1) xi(1)=a; for i=0:(n-2) xi(i+2)=tr_inv(-cos(((2*i+1)*%pi)/(2*(n- 1)))); end; xi(m)=b; disp(xi,"xi="); function f=f(x); f=1/(1+25*(x^2)); endfunction; yi=zeros(m,1); for i=1:m yi(i)=f(xi(i)); end; disp(yi,"yi="); hi=zeros(n); for i=1:n hi(i)=xi(i+1)-xi(i); end; disp(hi,"hi="); di=zeros(n,1); for i=2:(n-1) di(i)=(6/(hi(i)+hi(i+1)))*((yi(i+2)-yi(i+1))/hi(i+1)-(yi(i+1)-yi(i))/hi(i)); end; di(n)=(6/(hi(n)))*(bt1-((yi(n)-yi(n-1))/hi(n))); di(1)=6/hi(1)*((yi(2)-yi(1))/hi(i+1)-al1) disp(di,"di="); lai=zeros(n); for i=1:(n-1) lai(i)=hi(i+1)/(hi(i)+hi(i+1)); end; lai(n)=hi(1)/(hi(1)+hi(n)); disp(lai,"lai="); mii=zeros(n); for i=1:n mii(i)=1-lai(i); end; disp(mii,"mii="); mm=zeros(m,m); mm(1,1)=2; mm(1,n+1)=1; for i=1:(n-1) mm(i+1,i)=mii(i); mm(i+1,i+1)=2; mm(i+1,i+2)=lai(i); end; mm(n+1,n)=1; mm(n+1,n+1)=2; disp(mm,"mm="); fv=zeros(m,1); fv(2:m,1)=di; disp(fv,"fv="); M=mm\fv; disp(M,"M = "); function si=si(i,x); si=M(i)*((xi(i+1)-x)^3)/(6*hi(i))+M(i+1)*((x-xi(i))^3)/(6*hi(i))+((yi(i+1)-yi(i))/hi(i)-(hi(i)/6)*(M(i+1)-M(i)))*(x-xi(i))+yi(i)-M(i)*(hi(i)^2)/6; endfunction; function s=s(x); while x<a>=b x=x-b+a; end; for i=1:n if x<xi(i+1) then s=si(i,x); break; end; end; endfunction; d=linspace(a,b,10000); plot(d,f); plot(xi,yi,"ok"); plot(d,s,"r"); clear; phi^3_3 clear; funcprot(0); clf; a=-1; b=1; n=11; h=(b-a)/n; xi=zeros(n+1,1); for i=0:n xi(i+1)=a+i*h; end; disp(xi,"xi="); function f=f(x); f=1/(1+25*(x^2)); endfunction; yi=zeros(n+3,1); yi(1)=0; for i=0:n yi(i+2)=f(xi(i+1)); end; yi(n+3)=0; disp(yi,"yi="); M=zeros(n+3,n+3); M(1,1)=1; M(1,3)=-1; M(1,n+1)=-1; M(1,n+3)=1 for i=2:(n+2) for j=1:(n+3) if i==j then M(i,j)=4; end; if i+1==j|i==j+1 then M(i,j)=1; end; end; end; M(n+3,1)=1 M(n+3,2)=-2 M(n+3,3)=1 M(n+3,n+1)=-1; M(n+3,n+2)=2 M(n+3,n+3)=-1 disp(M,"M="); c=M\yi; disp(c,"c = "); function y=phi3(i,x); xip=zeros(5); for k=1:5 xip(k)=a+(i-3+k)*h; end; if x<xip(1) then y=0; else if x<xip(2) then y=((x-xip(1))^3)/(h^3); else if x<xip(3) then y=1+3*(x-xip(2))/h+3*((x-xip(2))^2)/(h^2)-3*((x-xip(2))^3)/(h^3); else if x<xip(4) then y=1+3*(xip(4)-x)/h+3*((xip(4)-x)^2)/(h^2)-3*((xip(4)-x)^3)/(h^3); else if x<xip(5) then y=((xip(5)-x)^3)/(h^3); else y=0; end; end; end; end; end; endfunction; function fs=fspline(x); fs=0; for i=1:(n+3) fs=fs+c(i)*phi3(i-2,x); end; endfunction; d=linspace(a,b,100); plot(d,f); plot(xi,yi(2:(n+2)),"ok"); plot(d,fspline,"r"); clear; DYSKRETNA TRANSFORMATA SINUSOWA clear; funcprot(0); clf; function f=f(x); f=x^(sin(x)); endfunction; a=0; disp("a = "+string(a)); b=2; disp("b = "+string(b)); c=1; disp("c = "+string(c)); N=40; disp("N = "+string(N)); m=3; disp("m = "+string(m)); function f=f(x); if x<0 then f=0; else if x<0.5 then f=1; else if x<=1 then f=3; else if x<1.5 then f=-2*x+5; else if x==1.5 then f=0; else if x<2 then f=2; else if x==2 then f=1; else f=0; end; end; end; end; end; end; end; endfunction; if f(a)==f(b) then c=f(a); end; function tr=tr(x); tr=(%pi/(b-a))*(x-a); endfunction; function tri=tr_inv(t); tri=((b-a)/%pi)*t+a; endfunction; function g=g(t); g=f(tr_inv(t))-c; endfunction; xk=zeros(N); gk=zeros(N); Gn=zeros(N); bn=zeros(N); for i=0: (N-1) xk(i+1)=(%pi*i)/N; gk(i+1)=g(xk(i+1)); end; for j=0:(N-1) gks=zeros(N-1); for i=1:(N-1) gks(i)=gk(i+1)*sin((%pi*i*j)/N); end; Gn(j+1)=sum(gks) bn(j+1)=(2/N)*Gn(j+1) end; function G=G(t); bns=zeros(N-1); for j=1:(N-1); bns(j)=bn(j+1)*sin(j*t) end; G=sum(bns); endfunction; function F=F(x); F=G(tr(x))+c; endfunction; function E=E(x); E=abs(f(x)-F(x)); endfunction h=b-a; d=linspace(a,b,1000); dl=linspace(a-2*h,b+2*h,5000); d1=linspace(a,0.5-%eps,250); d2=linspace(0.5,b-%eps,750); clf(0); plot(d1,f); plot(d2,f); plot({0,0.5,1,1.5,2},{1,3,3,0,1},"."); plot({0.5,1.5,2},{1,2,2},"o"); plot(d,F,"r"); clf(1); plot(d1,E) plot(d2,E) plot({0.5,1.5,2},{abs(1-F(0.5)),abs(2-f(1.5)),abs(2-F(2))},"o"); plot({0.5,1.5,2},{E(0.5),E(1.5),E(2)},"."); clear; clear; funcprot(0); clf; a=-1; disp("a = "+string(a)); b=1; disp("b = "+string(b)); n=11; disp("n = "+string(n)); al1=1.634; disp("alpha_1 = "+string(al1)); bt1=-4.673; disp("beta_1 = "+string(bt1)); h=(b-a)/n; disp("h = "+string(h)); xi=zeros(n+1,1); for i=0:n xi(i+1)=a+i*h; end; disp(xi,"xi="); function f=f(x); f=1/(1+25*(x^2)); endfunction; yi=zeros(n+3,1); yi(1)=-(h*al1)/3; for i=0:n yi(i+2)=f(xi(i+1)); end; yi(n+3)=-(h*bt1)/3; disp(yi,"yi="); M=zeros(n+3,n+3); M(1,1)=1; M(1,3)=-1; for i=2:(n+2) for j=1:(n+3) if i==j then M(i,j)=4; end; if i+1==j|i==j+1 then M(i,j)=1; end; end; end; M(n+3,n+1)=1; M(n+3,n+3)=-1 disp(M,"M="); c=M\yi; disp(c,"c = "); function y=phi3(i,x); xip=zeros(5); for k=1:5 xip(k)=a+(i-3+k)*h; end; if x<xip(1) then y=0; else if x<xip(2) then y=((x-xip(1))^3)/(h^3); else if x<xip(3) then y=1+3*(x-xip(2))/h+3*((x-xip(2))^2)/(h^2)-3*((x-xip(2))^3)/(h^3); else if x<xip(4) then y=1+3*(xip(4)-x)/h+3*((xip(4)-x)^2)/(h^2)-3*((xip(4)-x)^3)/(h^3); else if x<xip(5) then y=((xip(5)-x)^3)/(h^3); else y=0; end; end; end; end; end; endfunction; function fs=fspline(x); fs=0; for i=1:(n+3) fs=fs+c(i)*phi3(i-2,x); end; endfunction; d=linspace(a,b,100); plot(d,f); plot(xi,yi(2:(n+2)),"ok"); plot(d,fspline,"r"); clear; clear; funcprot(0); clf; a=-1; disp("a = "+string(a)); b=1; disp("b = "+string(b)); n=14; disp("n = "+string(n)); al2=0.1; disp("alpha_2 = "+string(al2)); bt2=0; disp("beta_2 = "+string(bt2)); h=(b-a)/n; disp("h = "+string(h)); xi=zeros(n+1,1); for i=0:n xi(i+1)=a+i*h; end; disp(xi,"xi="); function f=f(x); f=1/(1+25*(x^2)); endfunction; yi=zeros(n+3,1); yi(1)=((h^2)*al2)/6; for i=0:n yi(i+2)=f(xi(i+1)); end; yi(n+3)=((h^2)*bt2)/6; disp(yi,"yi="); M=zeros(n+3,n+3); M(1,1)=1; M(1,2)=-2; M(1,3)=1; for i=2:(n+2) for j=1:(n+3) if i==j then M(i,j)=4; end; if i+1==j|i==j+1 then M(i,j)=1; end; end; end; M(n+3,n+1)=1; M(n+3,n+2)=-2; M(n+3,n+3)=1; disp(M,"M="); c=M\yi; disp(c,"c = "); function y=phi3(i,x); xip=zeros(5); for k=1:5 xip(k)=a+(i-3+k)*h; end; if x<xip(1) then y=0; else if x<xip(2) then y=((x-xip(1))^3)/(h^3); else if x<xip(3) then y=1+3*(x-xip(2))/h+3*((x-xip(2))^2)/(h^2)-3*((x-xip(2))^3)/(h^3); else if x<xip(4) then y=1+3*(xip(4)-x)/h+3*((xip(4)-x)^2)/(h^2)-3*((xip(4)-x)^3)/(h^3); else if x<xip(5) then y=((xip(5)-x)^3)/(h^3); else y=0; end; end; end; end; end; endfunction; function fs=fspline(x); fs=0; for i=1:(n+3) fs=fs+c(i)*phi3(i-2,x); end; endfunction; d=linspace(a,b,100); plot(d,f); plot(xi,yi(2:(n+2)),"ok"); plot(d,fspline,"r"); clear; clear; funcprot(0); clf; function f=f(x); f=x^(sin(x)); endfunction; a=0; disp("a = "+string(a)); b=2; disp("b = "+string(b)); N=5; disp("N = "+string(N)); m=3; disp("m = "+string(m)); function tr=tr(x); tr=(2*x-(a+b))/(b-a) endfunction; function tri=tr_inv(t); tri=((b-a)*t+(a+b))/2; endfunction; function g=g(t); g=f(tr_inv(t)) endfunction; c=zeros(m+1); l=nearfloat("pred",1); tc=linspace(-l,l,N); lct=zeros(N); mct=zeros(N); for j=0:m for i=1:N lct(i)=g(tc(i))*legendre(j,0,tc(i)); mct(i)=legendre(j,0,tc(i))*legendre(j,0,tc(i)); end; lc=inttrap(tc,lct); mc=inttrap(tc,mct); c(j+1)=lc/mc; end; disp(c,"c="); function G=G(t); cp=zeros(m+1); if t<1>=1 then t=nearfloat("pred",1); end for j=0:m cp(j+1)=c(j+1)*legendre(j,0,t); end; G=sum(cp); endfunction; function F=F(x); F=G(tr(x)); endfunction; d=linspace(a,b,1000); plot(d,f); plot(d,F,"r"); clear; |
||||
![]() |
|||||
Wszelkie Prawa Zastrzeżone! Dodatki na portala,konkursy,instrukcje - Onet.pl portal Design by SZABLONY.maniak.pl. |
![]() |
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |